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Abrtract We present analytical and numerical studies for the evolution of a landscape in 
flood. Our model is based on the assumption that the local fluxes of both water and sediment 
depend only (and simply) on the gradient of the water surface and local depth of flood. 
Nonlinear differential equations for witer conservation dictate the distribution of flood- 
water. The divergence of the sediment flu then determines the net rise (deposition) or fall 
(erosion) of the underlying landscape. We present linear stability analysis for an inirially 
planar slope. with d o r m  water flow: the dominant instability is the development of 
corrugations at an angle oblique to the flow direction. Numerical results are presented for 
the long time evolution of a system with periodic boundary conditions, and no net gain or 
loss of either water or sediment. The resulting landscape resembles that of a braided river 
bed, and analysis of the contours shows quantitative agreenient with the experimental power 
law distribution  of island sizes for the Zaire and Rakaia river systems and the outwash 
drainage system at  Vatnajokull. 

1. Introduction 

Simulation of river flood-plains has tended to fall into three main categories: 
(a) Models that incorporate a set of empirically determined equations to describe 

aspects of the flood-plain evolution [ 11 : these aim primarily at producing realistic flood- 
plain strata and less at determining variable interdependence. 

(b) Detailed physical models which attempt to solve the fluid flow and sediment 
transport realistically [2]. These produce highly realistic results, but are limited to fairly 
small grids by the high computational cost. As with the first category, they tend to 
require detailed initial conditions and to exhibit a degree of complexity that can make 
understanding of individual aspects difficult. 

(c) Simplistic physical models. These make important assumptions about the basic 
underlying processes such as water flow and erosion in order to gain simplicity at the 
expense of realism. While they were popular at a time when computer power was more 
limited, they were to some extent eclipsed as more detailed simulation became possible. 
There has however been a recent revival of interest in such models [3,4] due to the 
comparative ease with which many features of their behaviour can be understood, 
and also to suggestions that some aspects of system behaviour may be comparatively 
independent of the details of the model. For example in [4] the authors found that the 
system as modelled exhibited self-organized criticality, a form of behaviour generally 
robust with respect to small changes of the model [5]. 

The model considered here falls into category (c); its purpose is to investigate how 
water flow over an initially flat plane of erodible sediment might lead to a non-uniform 
time evolution and to see what features might result from such a model: a central 
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assumption is made that the evolution of the landscape itself is by far the slowest 
process involved, and thus that the water flow can be calculated, as a reasonable 
approximation, as though the landscape were static (there are clearly examples where 
this is inapplicable, but it has wide relevance to landscapes evolving over months or 
years). The water flow is then used to calculate the sediment transport, and hence the 
landscape evolution. In all cases the equations are made as simple as is consistent with 
elementary physical constraints. 

G N Barzini and R C Ball 

2. Present model 

Our model is based on the following principles and assumptions: 
(i) The flow velocity is averaged vertically so as to have a single value u(x ,y )  

everywhere in the x-y plane. 
(ii) The flow velocity is assumed to be a purely local function of slope and depth 

only, ensuring that the equations are purely differential in form, and simplifying the 
problem. 

Given these assumptions a dimensional argument suggests that the velocity takes 
the form 

U =  -ad'/*g.n/(g,fi )"* (1) 

where d(x, y)  is the water depth and a is some dimensionless constant depending on 
viscosity, density and coefficient of roughness. The effective gravitational acceleration 
acting on the water, g c ~ ,  is taken as the component of gravity acting along the slope 
of the water surface. Assuming the slope to be shallow enough for small angle approxi- 
mations to apply, one can therefore write: 

geff=gV(h+d) (2 )  

where h(x, y )  is the height profile of the underlying land. 
(iii) The water flux q=du is conserved: 

adiat = -v . q. (3) 

This completes our (simplistic) model of the water flow, in broad agreement with certain 
empirical models of dissipative water flow (see [2 ] ,  chapter 4 and references therein). 

Further assumptions are now needed about the erosion, transport and deposition. 
The complication here is that in reality a wide range of transport mechanisms are known 
to apply to different sediment types, and the relation between the rate of transport by 
these mechanisms and such factors as flow rate and degree of turbulence do not appear 
fully understood. The following simplifying assumptions were therefore used: 

(iv) There is only one sediment type (clearly there are interesting generalizations if 
more sediment types are included, with interaction between them). The load (volume 
fraction) of sediment borne by the water will be denoted L(x ,y ) ,  and the flux of 
sediment will he assumed to be 

q s = L q .  (4) 

(v) There is a maximum amount of sediment that the water can support at any 
given point, the capacity C, which can be described as a homogenous function of the 
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depth and flow velocity: 

C= Kd"v2' (5 )  

for some constants K,  a,  and p. Noting that C can readily be re-written as a function 
of any two not linearly related flow variables, this is again consistent with many of the 
empirical formulae describing sediment transport [ 2 , 6 ] .  

(vi) Where there is a discrepancy between the load L and capacity C, sediment is 
eroded/deposited from the river bottom at a rate linear in the difference, with some 
time constant r ,  leading~to a rate of change in the landscape height, h, given by: 

ah/at=d(L- cyz. (6) 
In general 5 need not be a constant (it could include, for example, geometrical factors, 
although this is not considered further here), but is assumed to be the same for deposi- 
tion and erosion, and also that the sediment has no cohesion: there is no flow threshold 
below wbicb erosion cannot occur. This bas no clear physical basis, it is adopted simply 
in order to make the rate of erosion/deposition an analytic function of the load/ 
capacity imbalance: For these reasons we will go on to consider behaviour in the l i t  
T*O. 

(vu) Continuity of sediment 

-ah/at = v . (qL) + d aL/at (7)  

completes the model in principle. 
(viii) In this paper the further simplifying assumption is made that the relaxation 

time of the water depth is negligible on the timescale over which the underlying terrain 
changes. Then for a given state of the landscape the water will effectively be in steady 
state and equation ( 3 )  is replaced by V .4 = 0. 

3. Lmear instability analysis 

There is clearly a stationary solution of the model equations with constant slope, ho= 
0 ' Y  (or simply ho=Qn), uniform depth & and initially sediment-saturated: L =  Co. In 
such a set-up, with periodic boundary conditions, no net erosion or deposition occurs. 

If a smaU perturbation of the bottom profile is introduced such that 

h= ho+ Ah= ho+hl eir' 

we can compute the resulting linear changes of depth and capacity, 

Ad= AAh and AC=BAh 

in terms of (complex) amplitudes A and B. 
Expanding q to first order in hl and imposing V . p=O gives 

A =  -( 1/&z+k2,)/(1/2k: +k2, - 3/2Qik,/do) (8) 

and expanding C (from (5 ) )  using this result for Ad gives 

B= -K(g@)Pdtfp- l  {p(ik,(l +A)do/0 +A) + aA}  

= K(gB)'dt+'-'{ (a  + p)g + (a /2  - p)k:}/( I/&=+ $- 3/28ikx/&). (9) 
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Assuming that hl has time dependence e”, equating (6) with (7) and rearranging 
gives 

AL=AC/(&+t(ik-q+p&). (10) 

Substituting this back into (6) gives a quadratic inp  with solutions 

p i  =[-(do+ B&+izk. q)f {(do+ B&+izk. q)’-4irk. qBdi} “2]/2d~t. 

The interesting root isp,, the other,p-, having a -ve real part over all plausible ranges 
of a,P (2-3 and 1.5-2 respectively) and so expected to have no significant effect on 
the behaviour of the system. 

Figure 1 shows, Re(p+) as a function of k in the plane. If k is written as 
k(cos 4, sin 4 ) then Re(p+) > 0, giving exponential growth, for 4 greater than a critical 
angle &. Aiso, Re(p+) has a maximum as a function of 4 and tends to 0 as 4 reaches 
n/2. This physically corresponds to the fact that this model conserves sediment: if there 
is no sink at the lower boundary, the only way for. a channel to deepen is by there 
being a cross-channel component of water flow that transports sediment from troughs 
to crests. This clearly requires that k have a component parallel to q. and hence, since 
q remains down-slope to zeroth order, channels running directly down-slope do not 
grow. (Growth could also be possible in principle by the increased flow down a channel, 
and hence increased capacity, outweighing the amount of sediment erosion needed to 
deepen the channel, but that does not apply here.) 

4. Limiting cases 

It can be seen in figure 1 that the angle of fastest growth, &, tends to n/2 ask increases 
and examination of the equation show that this happens for I zk . q1 >>do, where t is an 
equilibration time for sediment load w.r.t. carrying capacity (equation (6)). This results 
from the fact that for significant deepening of a channel to occur, the time taken for 
sediment to be transported from a trough to a crest, given by I/(k. U) must exceed t, 
hence the angle between k and U increases with k. However, in a real system there must 
also be some competing cut-off at high k due to effects such as turbulent mixing, and 
the form of z is also uncertain. 

We are thus motivated to focus on the case where 5 < l/ku < l/p holds, meaning 
physically that the time for sediment to be sconred/deposited is smaller than that for 
either the landscape or the water-flow to alter significantly. This has the advantages 
that the problem of an unknown and probably variable 7 does not affect this regime, 
and the system no longer contains any timescale beyond that defined by the initial 
conditions (qld;). The rate of evolution simply scales with the size and slope of the 
system and the instability reduces to p+=(- i k .  qB)/(Q+d;B). 

One further approximation can be made that j Bdo I < 1 in cases to which this model 
is applicable, equivalent to saying that d aL/at <q.  VL, i.e. that the sediment load is 
in steady-state, which will be the case to first order in the rate of change of the terrain 
(which is small). Hence, p+ becomes simply -ik . qB/do, with real part 
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&= 1 . 0  
0 = 0 . 0 1  

kx 
Figure 1. Contour plot of the real part of the growth exponent, Re@+), as a function of 
wavevector, k, with a=3.0, p=1.15, K= 1 :  (U )  the original form, (b) the limiting case of 
equation (1 1). 
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which clearly has a maximum at a definite value of Q, (figure l(b)) which is a function 
of a, p and k resulting in well defined channels at a definite angle to the downstream 
direction, the angle for the onset of instability being given by 

&= tan-'[(p-a/z)/(p t a)]"? (12) 
Also the angle of maximum growth no longer goes to n/2 as k increases. 

There is also the k-dependence to consider. Here the main criterion is the value of 
k compared to Old. When signi6cantly larger, the value of Re(p+) reaches an asymptotic 
limit (approached significantly faster than in the case of z = l), while for smaller values, 
it is quadratic in k resulting in behaviour that is diffusion-like or anti-ditfusion-like 
depending on 4. While high wavenumber perturbations grow fastest, it seems possible 
that the length-scale d/O plays a significant part in the behaviour of the system deter- 
mining a length for large-scale structure. 

5. Simulation 

The nonlinear behaviour of the model has been explored by computer simulation, 
implementing the equations in their simplest form: low capacity so that water and 
sediment flow are at steady-state with the landscape, and negligible relaxation time of 
load to capacity (i.e. z=O). The program (in standard FORTRAN77) uses a finite 
difference scheme, in both time and space, the spatial approximation being on a square 
lattice. 

Progress in time is by an explicit forward-step method due to the dficulty of 
expressing the nonlinear equations in implicit form, although this limits the efficiency 
of the simulator, and a more sophisticated approach might ultimately be desirable. 

In all cases the boundary conditions used were as follows: the initial condition was 
a uniform plane of sediment sloped in the xdirection to which a low level of white 
noise was added. The boundaries were effectively periodic in both directions: directly 
so along y, while along x allowance was made for the net drop across the grid, giving 
an arrangement in which the water flows continually downhi, returning to the same 
point (rather in the style of an M C Escher print). 

Flow was calculated along the two bonds joining each lattice point to its nearest x 
and y neighbours. The gradient component along each bond being calculated by simple 
difference between the ends, while that across the bond was taken from the nearest 
neighbours to the bond end at right-angles to it (figure 2). The depth along the bond 

Flux along (U,1)= 
0 (i+l ,j-1) -(d"3/2)*dx/(dx"2+dy~Z)~l14 

Where: d= (d(i,j)+d(i+l j))/2 
dx=H(i+l ,j)-H(ij) . 
dy=(H(i+l j-l)+H(i+l j + l ) -  

H(ij-1 )-H(i,j+l))/Z 0 (kl i )  
(iJ) w H(ij)=h(i,j)+d(i,j) I 

Figure 2. Diagram of difference scheme used in simulation, 
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was taken as the simple mean of the two end values?. Both the simulated solutions to 
the water flow problem alone and to sediment transport have been tested against the 
above analytic solutions in the limiting case of small sinusoidal perturbations: agree- 
ment is good, limited mainly by the grid-spacing. 

6. Results and comparison 

Perturbations at first grow exponentially, as suggested by the stability analysis. Once 
the features formed have reached a significant fraction of water depth, the rate of 
evolution peaks and then falls, eventually reaching a plateau level, several orders of 
magnitude lower than the peak, which exhibits noise of a partly power-law form (the 
power spectrum has a large low-frequency part, followed by a section that is to a good 
approximation power-law with exponent -2). This plateau behaviour then persists, 
corresponding to a statistical steady state in which some features fade while others 
appear and at the same time there is a gradual overall dispersion upstream (while not 
immediately intuitive, this is not necessarily inconsistent with real systems). A typical 
result is shown in figure 3(a).  The principal features are sets of ridges and troughs, of 

F i p r e  3a. r%M (IC ~ C I U ~ I %  rrom i, s ~ m ~ ~ l i i t t o i i  on I! Io0 x IO(i p1-d nlll?' (1 ~ 3 11. p =  1.75, 
~l,,-ll.l (whcrc thc grid-spacinp ~ 1.01 and 0-0.02. The top of thc piifc corresponds to 
the top of the slope. inverted V-shaped pattcrns oi disturbance can he seen on a smoother 
hackground (light correspond to higher ground, dark to lowcr. the background slope has 
been subtracted OR to increase the visibility of these features). 

T Other averaging schemes far the depth such as the hamanic mean are being considered in current work. 
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Figure 3b. Exilniples 01 rhomboid rill pattcrns ( I rom 171). 

wavelength about two lattice-spacings, which run at a clear preferred angle to the 
downstream direction. This is in line with the results of the stability analysis, although 
variations (e.g. adapting the simulation to a triangular grid) show that the angle is 
affected by the lattice vectors of the grid. There is also a definite division on  a larger 
scale into strongly and weakly ridged regions. 

Visually there is a noticeable resemblance to features left on beaches by outgoing 
tides, known as rhomboid rills (figure 3(h))  [7]. This may he explained by the fact that 
these features are formed on a surface of sand initially approximately flat, by flow of 
a small depth of water for a comparatively short time, so that the effect of the open 
boundaries is small. 

The other systems which invite comparison are long braided rivers: these can remain 
statistically self-similar for long distances along and across the stream as a result of 
which boundary effects can he considered relatively unimportant. 
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One difiiculty in making comparisons with the model is that since the simulation as 
described here conserves'both water and sediment, it cannot produce areas of dry land 
from the initial conditions given. The solution adopted here was the comparatively 
crude one of taking a vertical displacement from the initial sediment plane and assigning 
each point as 'dry' or 'flooded' depending. on whether it was higher or lower than the 
cut-off height. 

Visual comparisons with photographs of real braided rivers [S-IO] show a major 
difference: that the 'islands' of the simulation feature ragged edges with detail down to 
the lattice size (as suggested by the stability analysis) while the real ones are largely 
compact. Both, however, exhibit a power-law size distribution for the number of islands 
dN in a given range of area dA, 

dN/dAccA-Y (13) 
with the apparent exponent y varying with the fraction of the channel that is 
underwater. These results are shown in figures 4 and 5 (figure 4 includes a sample plot 
from the simulation results). There is a well defined peak in the simulation values of 
the exponent, corresponding to an anisotropic percolation threshold; the spanning 
cluster predictably always crosses the grid along the direction of flow. 

The considerable x-axis spread of the photograph data is due to the difficulty of 
defining properly the boundaries of the channel, and distinguishing large islands from 
part of the mainland. This problem is most noticeable at small water coverage (corre- 
sponding to channels near or below the percolation threshold in the model) where such 
debatable islands are a significant fraction of the exposed land within'the channel. 
Comparison with the simulation also becomes more debatable at low water coverage 
since as less area is flooded. the approximation of simply 'draining' the simulation by 
a given amonnt and considering the exposed land, rather than removing the water as 
the landscape is evolving becomes cruder. Clearly the onset of percolation in a real 
river system is not well defined, since a truly spanning cluster would result in two 
separate rivers. 

Nonetheless, while there is clearly a discrepancy, the measured exponents being less 
negative, they do not contradict the suggestion of a peak in the exponent at 40-45% 
water~coverage, and these results do make the extension to other river systems appear 
worthwhile. One point being investigated with regard to the simulation is whether a 

- ValnsjokUll - Rabia 
104 -Simulation 

1 02 

1 00 

IO" 

Island area (pixels) 

Figure 4. Island size distributions (simulation results correspond to 57% water cover). 
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25 30 35 40 45 50 55 60 65 70 
Percentage of area under wafer 

Upper & lower bounds of percolation threshold as measured directly on simulation - - - - - - - - 
data. 
Actual values obtained from aerial photographs 7) 

------)- Simulation result 

Figure 5. Apparent exponent as a function of water coverage. 

simple convolution blurring of the deposition function to approximate turbulent mixing, 
which would remove the extreme small-scale detail of the simulated results, can give 
visually more realistic island patterns (it is also possible that this would make the 
apparent exponent less negative). 

7. Cooclnsions and discussion 

Our model has the minimal feature that water flows sensibly downhill as the landscape 
changes, and that water and sediment are conserved. This together with the simplest 
of erosion/deposition models appears sufficient to generate non-trivial landscape 
features of some realism. 

The familiar formation of linear features oblique to the flow is supported by both 
analytic calculations of instability and also full numerical simulations. The correspond- 
ence between simulated landscape contours island size distributions in braided river 
systems is encouraging, although it may be the case that both are simply dominated 
by percolation statistics. 

So far we have only studied the model under conditions where deposition and 
erosion are in overall balance: it is now important to examine what happens when one 
or the other has a net dominance. Various other details require further examination, 
particularly the role of the lattice cut-off in our simulations. 
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